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We present a statistical analysis of defect-mediated turbulence in a kinetic model of catalytic CO oxidation
on Pt�110�. A probabilistic description based on the gain and loss rates of defects is derived. For low values of
the CO partial pressure the statistics of topological defects agree with earlier results for the complex Ginzburg-
Landau equation. For high values of the CO partial pressure, we observe an additional autocatalytic reproduc-
tion of defects that results in a linear dependence of the defect creation rate on the number of defects in the
system. The role of correlations between defects of opposite topological charge was found to be weaker than
in the experimental system.
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I. INTRODUCTION

The emergence of spatiotemporal structures in nonequi-
librium systems has been intensively investigated over the
past decades �1,2�. Research in this interdisciplinary field
ranges from fundamental physics to chemical applications
and complex living systems �3�. Besides ordered patterns,
also irregular chaotic behavior can be observed in such sys-
tems. While deterministic chaos in low-dimensional dynami-
cal systems is well understood �see, e.g., Ref. �4� and other
standard text books�, disorder in high-dimensional, spatially
extended systems remains one of the outstanding open prob-
lems in this field.

In many extended pattern forming systems, disordered
states are characterized by the emergence of amplitude de-
fects. Such states are generally referred to as defect-mediated
turbulence �5�. A statistical description of defect dynamics
has been established as a unifying approach to characterize
spatiotemporal disorder in these systems. Defect dynamics
has been analyzed in generic model systems, such as the
complex Ginzburg-Landau equation �CGLE� �5–7� and the
FitzHugh-Nagumo system �8�. Also, defect statistics in the
presence of noise �9,10� and for systems with chaotic local
dynamics has been considered �11�. Recently, the theoretical
study of defect dynamics was extended to three-dimensional
excitable media, where the end points of scroll wave fila-
ments on the border of the medium constitute topological
defects with statistical properties that are clearly distinct
from a purely two-dimensional system �12�. The first proba-
bilistic description of defect mediated turbulence was devel-
oped by Gil et al. for the CGLE �6�. They consider topologi-
cal defects as statistically independent entities that are
created and annihilated in pairs of opposite topological
charge. In their model, defect creation is a random event that
does not depend on the number of defect pairs n in the sys-
tem and is only determined by the choice of the system pa-
rameters. Defect annihilation, on the other hand, requires that
two defects of opposite charge meet, i.e., will occur propor-
tional to n2. Based on the corresponding gain and loss rates
k+ and k−, they derived a squared Poisson distribution for the
number of defects in the system that shows good agreement
with the distribution found in numerical simulations of the
CGLE.

Laboratory observations of defect turbulence have been
reported from a number of nonlinear experimental systems,
namely, electroconvection in liquid crystals �13�, fluid con-
vection �14,15�, electrochemical systems �16�, and the
Belousov-Zhabotinsky �BZ� reaction �17�. Besides the BZ
reaction, the catalytic oxidation of CO on Pt�110� has been
established as a paradigmatic experimental model system to
study spatiotemporal pattern formation in a chemical
reaction-diffusion system far from thermodynamic equilib-
rium �18�. Compared to other heterogeneous catalytic sur-
face chemical reactions, catalytic CO oxidation on Pt�110�
exhibits exceptionally rich spatiotemporal dynamics �19�.
The CO oxidation system has been used in numerous studies
of spatiotemporal pattern formation, including control of
chaos �20–22� and engineering of self-organized structures
by periodic forcing �23,24�, global feedback �25,26�, and lo-
calized heterogeneities �27,28�.

Spatiotemporally chaotic states have already been re-
ported together with the first observations of pattern forma-
tion in catalytic CO oxidation �29�. In the context of chemi-
cal systems, they are typically referred to as chemical
turbulence. Recently, the first statistical analysis of defect-
mediated turbulence in experiments of catalytic CO oxida-
tion has been presented �30�. In contrast to the findings of
Gil et al. for the CGLE, the experimental data showed a
combined linear and quadratic dependence of the annihila-
tion rate on n. In this case, the probability density function
�PDF� takes the form of a modified Poisson distribution
�15,30�. The additional linear contribution to the annihilation
has been explained by the presence of strong short-range
correlations between defects of opposite topological charge.
Such correlations lead to an increased number of self-
annihilation events, in which defects are annihilating with
the same oppositely charged partner defect that they have
been created with. In this case, the two defects cannot be
treated as well-mixed objects. They are not statistically inde-
pendent so that self-annihilation will scale linearly with n. In
the present paper, we complement this experimental work
with theoretical data obtained in the framework of a well-
established kinetic model of catalytic CO oxidation, the
Krischer-Eiswirth-Ertl �KEE� model �31�. Since the early
1990s, the KEE model has been successfully used to inter-
pret the complex spatiotemporal behavior of catalytic CO
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oxidation. In general, there is no quantitative agreement be-
tween the behavior of the experimental system and the KEE
model. However, to a qualitative extent, all the dynamical
features of catalytic CO oxidation are accounted for in the
KEE model. Results on defect statistics have been reported
for a periodically forced version of this model in the context
of front explosion phenomena �32�. However, no analysis of
defect turbulence is available for the unperturbed KEE
system.

II. NUMERICAL MODEL AND METHODS

A. KEE model

The KEE model of catalytic CO oxidation on Pt�110�
takes all the prominent features of this surface catalytic re-
action into account, in particular, the adsorption of CO and
oxygen, the desorption of CO, the reaction of adsorbed CO
molecules and oxygen atoms, the surface diffusion of CO,
and the adsorbate induced structural phase transition of the
Pt�110� surface between the �1�1� bulk structure and the
�1�2� missing row structure. A number of secondary prop-
erties such as surface faceting, the formation of subsurface
oxygen, and global gas phase coupling are neglected in the
original version of the KEE model.

Three dynamical variables characterize the state of the
system, u�r , t�, v�r , t�, and w�r , t� with r= �x ,y�. They de-
scribe the surface coverage with CO and O, and the local
fraction of the surface in the nonreconstructed �1�1� phase,
respectively. The time evolution of these fields is governed
by the following system of equations,

�tu = k1sCOpCO�1 − u3� − k2u − k3uv + D�2u , �1�

�tv = k4pO2
�sO,1�1w + sO,1�2�1 − w���1 − u − v�2 − k3uv ,

�2�

�tw = k5� 1

1 + exp��u0 − u�/�u�
− w� , �3�

where k1, k2, and k4 are the rate constants of CO adsorption,
CO desorption, and oxygen adsorption, respectively. The pa-
rameters si with i= �CO� , �O,1�1� , �O,1�2� represent the
sticking coefficients of CO and oxygen, the latter being dif-
ferent on the �1�1� and �1�2� surface structures. Further-
more, D is the coefficient of CO surface diffusion, k3 denotes
the rate constant of the reaction between adsorbed CO and
oxygen, and k5, u0, �u control the surface structural transi-
tion between the �1�1� and �1�2� phases. The numerical
values of all modeling parameters are summarized in Table I.
The values of CO and oxygen partial pressures are chosen in
the oscillatory regime where uniform oscillations are un-
stable and chemical turbulence spontaneously emerges. A
snapshot of the CO coverage u from a turbulent time series
can be seen in Fig. 1�a�. For a systematic scan of the dynam-
ics of the spatially extended KEE model see Ref. �33�.

Numerical simulations are performed using a second-
order finite difference scheme for the spatial discretization
with a grid resolution of dx=4 �m. A system size of 400

�400 �m2 with periodic boundary conditions is chosen.
For time integration, an explicit Euler scheme with a fixed
time step of dt=0.001 s is used. Simulations are performed
for different levels of CO pressure, each of them over a total
simulation time of 1000 s. We systematically increase the
CO partial pressure from 4.6�10−5 to 4.7�10−5 mbar in
increments of 2�10−7 mbar. For the chosen oxygen partial
pressure of pO2

=12.0�10−5 mbar, this interval spans almost
the entire turbulent regime �33�.

B. Data processing

In order to detect topological defects, we transform the
simulation results into a representation in terms of phase and
amplitude variables. This is achieved following the empirical
method established in Refs. �34,35�. We define amplitude
and phase in the projection plane of the two model variables
u and w. Deviations from harmonic oscillations are compen-
sated by introducing a reference orbit, defined as the limit
cycle of oscillations in the �u ,w�-plane in absence of diffu-
sion �D=0�. As origin of the �u ,w� plane, we choose the
unstable steady state �u0 ,w0� at the center of the limit cycle.
The reference values are determined in a separate numerical
simulation for each set of parameters. The phase � of any

local system state �u ,w� is then defined as �=2�T̃ /Tref.

Here, T̃ is the time needed to proceed from some arbitrarily
chosen, fixed initial location on the reference orbit along the
orbit to the point that is defined by the direction of �u ,w�.
The reference time Tref is the period of the reference orbit.
The amplitude R is defined as R=� /�ref, where � is the dis-
tance of the point �u ,w� from the origin �u0 ,w0� and �ref the
distance from the origin to the reference orbit at the same
phase. For more details on this definition of phase and am-
plitude variables see Ref. �34�.

In Fig. 1, a snapshot of the u-field from a turbulent time
series is displayed along with the corresponding phase and
amplitude fields. In this representation, topological defects
can be identified. The location of a defect is characterized by

TABLE I. Parameters of the numerical model.

Parameter Value Description

k1 3.14�105 s−1 mbar−1 Impingement rate of CO

k2 10.21 s−1 CO desorption rate

k3 283.8 s−1 Reaction rate

k4 5.86�105 s−1 mbar−1 Impingement rate of O2

k5 1.610 s−1 Phase transition rate

sCO 1.0 CO sticking coefficient

sO,1�1 0.6 Oxygen sticking coefficient

on the 1�1 phase

sO,1�2 0.4 Oxygen sticking coefficient

on the 1�2 phase

u0 ,�u 0.35, 0.05 Parameters for the structural

phase transition

D 40 �m2 s−1 CO diffusion coefficient

pO2
12.0�10−5 mbar O2 partial pressure
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a vanishing amplitude. In the phase field, they coincide with
the end points of isophase contour lines, where the phase is
not defined and the phase gradient diverges. Such defects are
characterized by an integer topological charge, i.e., around
any closed contour surrounding a defect, the phase changes
by an amount of 2�mtop, with

mtop =
1

2�
� ���x,t�ds . �4�

The positions of defects are detected by identifying strong
positive and negative extrema in the gradient field of the
phase. In Fig. 1�b�, topological defects have been marked
according to their charge. Topological defects are created and
annihilated in pairs of opposite topological charge so that the
numbers of positively and negatively charged defects are
equal in a system with periodic boundary conditions, n+
=n−�n. Defect detection is performed with a frame rate of
10 Hz, i.e., defect analysis is carried out for 10 000 frames of
each simulation. The gain and loss rates are determined by
polynomial fits of the numerical data. Here, the only pro-
cesses that may change the number of defects are defect
creation and annihilation. Border effects, i.e., entering and
leaving due to defect mobility are absent because periodic
boundary conditions are used in our simulations. Different
forms of the probability distribution function �PDF� are de-
termined and compared to the probability distribution of the

defects obtained by the numerical simulations. For further
evaluation of the statistical properties, also tracking of the
individual defects is performed by using a next-neighbor par-
ticle tracking algorithm.

III. RESULTS

A. Numerical simulations

All simulations carried out within this study show fluctu-
ating defect numbers in the course of time. Figure 2�a� shows
exemplarily the time evolution of the number of defect pairs
for pCO=4.60�10−5 mbar and pCO=4.66�10−5 mbar. The
mean values are indicated by horizontal lines. In Fig. 2�b�,
the mean number of defect pairs is shown for the entire set of
six simulations as a function of CO partial pressure. With
increasing CO partial pressure, we first observe an increasing
average number of defect pairs. At around pCO=4.65
�10−5 mbar, the number of defects becomes maximal and
decreases when the CO partial pressure is increased further.
The corresponding probability distributions have been deter-
mined for all cases, three of which are shown in Fig. 3.

Examples for both gain and loss rates are displayed in
Fig. 4. They correspond to the three cases shown in Fig. 3.
Both the squared and the modified Poisson distributions ex-
pect a constant creation rate, see black lines in Figs.
4�a�–4�c�. They differ in an additional linear dependence of

0

100

300

400

(a)

x
[µ

m
]

(c)(b)

FIG. 1. Example of chemical turbulence in the KEE model. �a� CO coverage u, �b� phase, and �c� amplitude fields. Positive �negative�
topological defects are indicated as open �filled� circles. The CO partial pressure is pCO=4.66�10−5 mbar. The other parameters are as
listed in Table I.
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FIG. 2. �a� Number of defect pairs as a function of time for two different values of CO partial pressure, pCO=4.60�10−5 mbar and
pCO=4.66�10−5 mbar. �b� Average number of defect pairs as a function of CO partial pressure.
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the loss rate on n for the modified Poisson distribution. The
annihilation rates found in the simulations of the KEE model
are well approximated by a quadratic dependence on n, k−
=an2, given as black lines in Figs. 4�d�–4�f�. Only small
improvements are found, when allowing for an additional
linear term, see the gray lines in Figs. 4�d�–4�f�. The result-
ing squared and modified Poisson distributions are depicted
in Fig. 3. While the distribution at low CO partial pressure
�Fig. 3�a�� is well described by the squared Poisson distribu-
tion, for higher CO partial pressures �Figs. 3�b� and 3�c�� the
distribution is significantly broader than predicted by both
the squared and the modified Poisson distribution. These de-
viations between numerical results and theoretical predic-
tions are caused by a linear dependence of the defect creation
rate on the number of defect pairs n, k+�n�=c+dn. The value
of d increases for larger CO partial pressures, i.e., the depen-

dence of defect creation on the number of existing defects in
the system becomes more pronounced. Therefore, we will
derive a probability distribution function for the number of
defect pairs taking this dependence into account.

B. Probabilistic model

Following Gil et al. �6�, the master equation for the prob-
ability p�n , t� of finding a number of n defects at time t in the
system reads as

�tp�n,t� = k+�n − 1�p�n − 1,t� + k−�n + 1�p�n + 1,t�

− k+�n�p�n,t� − k−�n�p�n,t� , �5�

where k+�n� and k−�n� are the gain and loss rates of defects
which may depend on the number of defects n. In the statis-
tically stationary regime, �tp�n , t�=0, Eq. �5� yields a simple
recursive relation for the probability p�n�,

p�n� =
k+�n − 1�

k−�n�
p�n − 1� . �6�

To derive the probability distribution for the number of de-
fects n, expressions for the gain and loss rates are required.
Based on the results of the previous section, we take

k+�n� = c + dn , �7�

k−�n� = an2. �8�

Inserting the expressions for k+ and k− into Eq. �6� the fol-
lowing probability distribution is obtained:

p�n� = Q
�n	�
 + n�

�n!�2 , �9�

with �= d
a and 
= c

d . The distribution �Eq. �9�� is termed the
replication distribution. Normalization requires

Q =
1

��
,1;��	�
�
, �10�

where � denotes the degenerate hypergeometric function.
See the Appendix for details of the derivation of the replica-
tion distribution �Eq. �9��.

The values of a, c, and d are given by the fit parameters of
the rate constants displayed in Fig. 4. The corresponding
values of �= d

a and 
= c
d are substituted into Eq. �9�. In Fig. 3,

the resulting PDFs can be seen in superposition with the
distributions obtained from the numerical simulations. The
replication distribution �Eq. �9�� yields a close approximation
of the numerical result.

IV. DISCUSSION

At low values of the CO partial pressure, the KEE model
remains close to the onset of periodic behavior �Hopf bifur-
cation� and oscillations are approximately harmonic. Conse-
quently, we find agreement with the CGLE �6�. In particular,
we observe constant creation and quadratic annihilation rates
and a squared Poisson distribution for the number of defects
in the system, see Figs. 3�a�, 4�a�, and 4�d�. With increasing
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FIG. 3. Probability distributions obtained from the analysis of
the numerical data �bars�. The superposed curves show a squared
Poisson distribution �open circles�, a modified Poisson distribution
�diamonds�, and the replication distribution according to Eq. �9�
�filled circles�. The CO partial pressure is �a� pCO=4.62
�10−5 mbar, �b� 4.66�10−5 mbar, and �c� 4.70�10−5 mbar, re-
spectively. The other model parameters are as listed in Table I.
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CO partial pressure, i.e., with increasing distance from the
Hopf bifurcation, oscillations become anharmonic and the
dynamics of the KEE model can no longer be approximated
by the CGLE. Here, we find a linear dependence of the cre-
ation rate on n. In this regime, defects replicate, i.e., defect
creation is enhanced when defects are already present in the
system �36�. This autocatalytic contribution to defect cre-
ation becomes stronger for increasing pCO, see Fig. 4. The
resulting PDF shows deviations from a squared Poisson dis-
tribution and can be captured by the replication distribution
according to Eq. �9�, see Figs. 3�b� and 3�c�. Defect replica-
tion has already been observed in earlier work on the KEE
model under global delayed feedback �35�. Note that a linear
creation rate was also reported for defect-mediated turbu-
lence in the BZ reaction �37�. It remains an open question to
elucidate the mechanism that relates the anharmonicity of
oscillations to autocatalytic defect creation.

Let us now compare the numerical results for the KEE
model with the analysis of experimental data from catalytic
CO oxidation that was reported in Ref. �30�. For the experi-
mental data, the linear dependence of the creation rate on n
has not been observed. We thus conclude, that the experi-
ments were conducted in a regime that corresponds to the
low-pressure situation of the KEE model �note that agree-
ment between experiments of catalytic CO oxidation on
Pt�110� and the KEE model are known to be qualitative, see,
e.g., Refs. �25,35��. For the annihilation rate, the experimen-
tal data has shown a combined linear and quadratic annihi-
lation rate. The linear contribution in the annihilation has
been explained by the presence of strong short-range corre-
lations between defects of opposite topological charge. These
correlations reflect that a large number of defect pairs self-

annihilate shortly after creation. The self-annihilating defects
cannot be considered as statistically independent well-mixed
objects and therefore contribute linearly to the annihilation
rate, for a further discussion see Ref. �30�. For the annihila-
tion rate derived from our numerical data we observe only
minor differences between the quadratic fit and the combined
quadratic and linear fit, see Fig. 4. In fact, it can be seen in
Fig. 3 that a modified Poisson distribution does not improve
the fit of the numerical histogram. This indicates that self-
annihilation events influence defect dynamics to a lesser ex-
tent in the model than in the experimental system.

To quantify the influence of self-annihilation events in the
model, we have split the total number of defects in our nu-
merical data into two subpopulations separating those defects
that self-annihilate from those that annihilate with different
partner defects. In Fig. 5, the fraction of self-annihilating
defects is shown as a function of CO partial pressure. Al-
though the self-annihilating defects represent about 50% of
the total number of defects over time �see the solid curve in
Fig. 5�, they only account for approximately 15% of the
defects at one given instant in time �see the dashed curve in
Fig. 5�. This is due to the fact that the self-annihilating de-
fects exhibit a much shorter life time than defects that mix
and do not self-annihilate. We have also determined separate
decay rates for the self-annihilating defects and for defects
that annihilate with a different partner defect. As expected,
we found a linear decay rate for the self-annihilating sub-
population �data not shown�. However, the majority of the
defects �85% of the defects that do not self-annihilate� show
quadratic annihilation. They dominate the statistics of the
total population. In contrast to the experimental results re-
ported in Ref. �30�, the decay rate of the total defect popu-
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FIG. 4. Defect gain and loss rates, ��a�–�c�� creation, and ��d�–�f�� annihilation rates. Open circles show the rates obtained from numerical
simulations of the KEE model for different values of the CO partial pressure, ��a� and �d�� pCO=4.62�10−5 mbar, ��b� and �e�� 4.66
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THEORETICAL ANALYSIS OF DEFECT-MEDIATED … PHYSICAL REVIEW E 81, 036209 �2010�

036209-5



lation in the model is well approximated by a quadratic de-
pendence on n, i.e., self-annihilation events are less
important here.

What is the reason for this discrepancy? A fundamental
difference between the numerical and the experimental data
is the presence of noise in the experimentally recorded im-
ages. The influence of noise on the statistics of topological
defects has already been investigated in the context of the
CGLE �9�. Here, it has been reported that under the influence
of noise, defect annihilation follows a combined linear and
quadratic dependence on n in contrast to the CGLE without
noise, where annihilation is purely quadratic �5�. We thus
conjecture that the different decay rates that were observed
in experiments with catalytic CO oxidation and in numerical
simulations of the KEE model can be attributed to the pres-
ence of noise in the experimental data. To support this ex-
planation, we have performed numerical simulations of the
KEE model with noise. The noise was implemented such that
the local CO coverage was subject to random fluctuations,
�tu=k1sCOpCO�1−u3�−k2u−k3uv+D�2u+	2�, where � de-
notes delta-correlated Gaussian white noise. We chose pCO
=4.64�10−5 mbar and all other parameters as listed in
Table I. Again, we determined the subpopulation of defects
that self-annihilate. The result is displayed in Fig. 5 by large
open symbols. It can be clearly seen that under the influence
of noise, more defects undergo self-annihilation. Conse-
quently, the enhanced linear contribution to the decay rate in
the experimental data may be due to the presence of noise.

APPENDIX: REPLICATION DISTRIBUTION
OF TOPOLOGICAL DEFECTS

In the following, the replication distribution function of
the number of topological defects is derived, see also Ref.
�38�. Based on the gain and loss rates of defects, k+�n� and
k−�n�, the master equation for the probability p�n , t� reads as

�tp�n,t� = k+�n − 1�p�n − 1,t� + k−�n + 1�p�n + 1,t�

− k+�n�p�n,t� − k−�n�p�n,t� , �A1�

where n is the number of defect pairs. In the statistically

stationary regime, �tp�n , t�=0, Eq. �A1� transforms into a
recursive relation for the probability p�n�,

p�n� =
k+�n − 1�

k−�n�
p�n − 1� . �A2�

Based on the rate constants observed in the numerical simu-
lations in Sec. III, the gain and loss rates are approximated
by the following expressions:

k+�n� = c + dn , �A3�

k−�n� = an2, �A4�

where c denotes a constant contribution to the rate of cre-
ation, dn takes defect replication into account, and an2 is the
rate of annihilation. Inserting Eqs. �A3� and �A4� into the
recursion relation �A2� yields

p�n� =
c + d�n − 1�

an2 p�n − 1� �A5�

and can be expanded further to

p�n� = p�0�

k=1

n
c + d�k − 1�

ak2 =
p�0�
�n!�2

dn

an 

k=0

n−1 � c

d
+ k� .

�A6�

Using the general relation



k=0

n−1

�x + k� =
	�x + n�

	�x�
� �x�n, �A7�

Eq. �A6� can be simplified to

p�n� = p�0�
�n

�n!�2 �
�n = p�0�
�n

�n!�2

	�
 + n�
	�
�

, �A8�

with �= d
a and 
= c

d . Since p�n� is a probability, normaliza-
tion is required,

�
n=0



p�n� = 1. �A9�

Substituting p�n� from Eq. �A8� into Eq. �A9� leads to

p�0��
n=0


�n

�n!�2 �
�n = p�0��
n=0


�n

n!

�
�n

�1�n
= 1, �A10�

and thus

p�0� =
1

��
,1;��
, �A11�

where � denotes the degenerate hypergeometric function
defined �39�
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FIG. 5. Fraction of self-annihilating defect pairs as a function of
CO partial pressure. The fraction with respect to the total number of
defects over time �solid line� and the average fraction at one instant
in time �dashed line� is shown. For the model parameters see Table
I.
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���,�;z� = 1 +
�

�
z +

��� + 1�
��� + 1�

z2

2!
+ ¯ = �

n=0


���n

���n
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n!
.

�A12�

Taking normalization into account, the so-called replication

distribution finally reads as

p�n� = Q
�n	�
 + n�

�n!�2 with Q =
1

��
,1;��	�
�
.
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